Parastrophic Invariance of Smarandache Quasigroups * †

نویسنده

  • Vasantha Kan
چکیده

Every quasigroup (L, ·) belongs to a set of 6 quasigroups, called parastrophes denoted by (L, πi), i ∈ {1, 2, 3, 4, 5, 6}. It is shown that (L, πi) is a Smarandache quasigroup with associative subquasigroup (S, πi) ∀ i ∈ {1, 2, 3, 4, 5, 6} if and only if for any of some four j ∈ {1, 2, 3, 4, 5, 6}, (S, πj) is an isotope of (S, πi) or (S, πk) for one k ∈ {1, 2, 3, 4, 5, 6} such that i 6= j 6= k. Hence, (L, πi) is a Smarandache quasigroup with associative subquasigroup (S, πi) ∀ i ∈ {1, 2, 3, 4, 5, 6} if and only if any of the six Khalil conditions is true for any of some four of (S, πi).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Necessary and Sufficient Conditions for Parastrophic Invariance of the Associative Law in Quasigroups

Every quasigroup (S, ·) belongs to a set of 6 quasigroups, called parastrophes denoted by (S, πi), i ∈ {1, 2, 3, 4, 5, 6}. It is shown that isotopy-isomorphy is a necessary and sufficient condition for any two distinct quasigroups (S, πi) and (S, πj), i, j ∈ {1, 2, 3, 4, 5, 6} to be parastrophic invariant relative to the associative law. In addition, a necessary and sufficient condition for any...

متن کامل

J un 2 00 8 A Pair Of Smarandachely Isotopic Quasigroups And Loops Of The Same Variety ∗ †

The isotopic invariance or universality of types and varieties of quasigroups and loops described by one or more equivalent identities has been of interest to researchers in loop theory in the recent past. A variety of quasigroups(loops) that are not universal have been found to be isotopic invariant relative to a special type of isotopism or the other. Presently, there are two outstanding open...

متن کامل

Ja n 20 08 A Pair Of Smarandachely Isotopic Quasigroups And Loops Of The Same Variety ∗

The isotopic invariance or universality of types and varieties of quasigroups and loops described by one or more equivalent identities has been of interest to researchers in loop theory in the recent past. A variety of quasigroups(loops) that are not universal have been found to be isotopic invariant relative to a special type of isotopism or the other. Presently, there are two outstanding open...

متن کامل

Smarandache isotopy theory of Smarandache: quasigroups and loops

The concept of Smarandache isotopy is introduced and its study is explored for Smarandache: groupoids, quasigroups and loops just like the study of isotopy theory was carried out for groupoids, quasigroups and loops. The exploration includes: Smarandache; isotopy and isomorphy classes, Smarandache f, g principal isotopes and G-Smarandache loops.

متن کامل

Parastrophically equivalent identities characterizing quasigroups isotopic to abelian groups

We study parastrophic equivalence of identities in primitive quasigroups and parastrophically equivalent balanced and near-balanced identities characterizing quasigroups isotopic to groups (to abelian groups). Some identities in quasigroups with 0-ary operation characterizing quasigroups isotopic to abelian groups are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008